Do you know what N-Type TOPCon means and what P-Type TOPCon means?
N-Type TOPCon (N-Type Solar Panel) is a Tunnel Oxide Passivated Contact (TOPCon) solar cell technology based on the selective carrier principle. The cell structure of this technology is an N-type silicon substrate cell, an ultra-thin layer of silicon oxide is prepared on the backside of the cell, and then a thin layer of doped silicon is deposited, which together form a passivated contact structure. This technology effectively reduces the surface composite and metal contact composite, for N-PERT cell conversion efficiency to further enhance the provision of greater space.
Compared to conventional P-type PERC cells, N-type TOPCon cells have higher oligo lifetime and better performance, which gives N-type TOPCon cells more room for conversion efficiency improvement. In addition, N-Type TOPCon cells have better double-sidedness, which contributes to higher module power and power generation.
In conclusion, N-TOPCon is an advanced photovoltaic technology with great potential for development. By improving the conversion efficiency, reduce costs and improve reliability, N-type TOPCon cells can become the core competitiveness of the future photovoltaic market, the highest conversion rate is known to the public information in the independent research and development of J-TOPCon3.0 POPAID technology and M10 size n-type cell up to 26.7%.
P-type TOPCon is another type of photovoltaic cell and the difference between N-type TOPCon is as follows:
Raw material: N-type photovoltaic cells are doped with elemental phosphorus, while P-type photovoltaic cells are doped with elemental boron.
Conductivity: N-type photovoltaic cells are electronically conductive, while P-type photovoltaic cells are hole conductive.
Lesson life: N-type photovoltaic cells have a longer lesson life, while P-type photovoltaic cells have a shorter lesson life.
Performance: N-type photovoltaic cells have higher conversion efficiency, shorter process, better resistance to attenuation, lower temperature coefficient, but higher production cost. The P-type photovoltaic cell conversion efficiency is lower, the process is longer, poorer attenuation resistance, higher temperature coefficient, but the production cost is lower.
Development trend: the current development trend of N-type photovoltaic cells is more obvious, because of its higher conversion efficiency, shorter process, better anti-attenuation, lower temperature coefficient, which is conducive to improving photovoltaic power generation and reduce power generation costs.